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The force on a small sphere in slow viscous flow 
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The force on a small sphere translating relative to  a slow viscous flow is found to 
O(Re4) for two different fluid flows far from the sphere, namely pure rotation and pure 
shear. For pure rotation, the O(Re4) correction to  the Stokes drag consists of an 
increase in the drag. For pure shear, the O(Re4) force contains a component perpendi- 
cular to the Stokes drag force. 

1. Introduction 
The force on an object immersed in a fluid flow is important in many practical 

situations. Soo’s (1  967) book gives an excellent discussion of many applications. 
Happel & Brenner (1965) gave a thorough discussion of the force on a particle in 

Stokes flow, where fluid inertia is unimportant. Childress ( 1  964) included the effect of 
inertia in the slow flow round a sphere in the situation where the fluid is rotating and 
the sphere translates along the axis of rotation. The correction to the Stokes drag was 
found to  enter a t  O(R& for small Re,. Here Re, = pBa2/p, wherep is the fluid density, 
p the viscosity, R the fluid rotation rate and a the sphere radius. The translation 
velocity V was also assumed to be small, the restriction being expressed by 

where Re, = pVu/p. 
Saffman ( I  965) calculated the effect of fluid inertia for a different situation: a small 

sphere translating slowly through a fluid undergoing parallel shear flow far from the 
sphere. He considered only sphere translations parallel to the fluid flow. Saffman’s flow 
is restricted in the same manner as that of Childress, i.e. by (l),  where now B = adU/dz ,  
in which U is the fluid velocity far from the sphere. Harper & Chang (1  968) generalized 
Saffman’s calculation to  bodies of arbitrary shape and more general sphere translation 
directions. They still considered parallel shear flow, however. 

More recently, Herron, Davis & Bretherton (1975) have calculated the transverse 
force on a small sphere under centrifuge conditions, i.e. moving slowly relative to a 
rapidly rotating fluid. They assumed that 

Re, Reh < 1, (1) 

V / R a  < Reh 4 1 .  (2) 

Thus their results are valid for Reft 9 Re,. 
The present work considers the force on a small sphere translating with respect to a 

fluid which is undergoing one of two different motions far from the sphere, namely 
pure shear or pure rotation. Our analysis follows the technique of Saffman and our 
results are valid for Re, < Reft 4 1,  where Re, is defined in the text. Our result for 
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pure rotation differs from that of Childress in that our sphere motion is perpendicular 
to the rotation axis. Our result differs from that of Herron et al. in that our rotation is 
slow while theirs is fast, in the sense that we look a t  motions subject to (1) rather than 
( 2 ) .  Consideration of the case of pure shear far from the sphere was motivated by the 
desire to include the single-sphere lift force in models of the mean motion of a particle- 
fluid mixture. Consideration of the problem from a rational mechanical point of view, 
subject to some assumptions about the nature of the two-phase mixture (Drew 1976)) 
suggests that the lift force per unit mixture volume should be of the form LV . D,, where 
V is the slip velocity and D, is the mean fluid deformation tensor, defined to be 
D, = +(Vv,+ v, V) .  Here v, is the mean fluid velocity and L is a scalar coeEcient which 
depends on the Euclidean norm of D,. 

2. Equations of motion 

viscous flow. The equations of motion are 
Let us calculate the force on a sphere which is not translating with respect to a slow 

V2q-Vp = Req.Vq,  V . q  = 0 (3)  

with the boundary conditions 

q -+ U = &+el +jze,) + cos 8 e, + sin Oe, as r 3 co, (4) 

q = Q x r  on r = l .  ( 5 )  

Here q is the dimensionless velocity field, defined by q = b / V ,  where 4 is the fluid 
velocity; p is the pressure; r = (x, y, z )  is the dimensionless position vector, defined by 
r = ?/a,  where ? is the position; Re = Va/v is the Reynolds number based on the 
sphere radius and the slip velocity, where V is the speed of the particle relative to the 
shear flow; 0 is the angle the particle translation velocity makes with the x axis; a is 
the particle radius; v is the kinematic viscosity; K is a dimensionless measure of the 
shearing, and Q is the rotation rate of the particle. The actual shear is given by 

U = vu = ( ~ ~ / 2 a )  (zel +jze,) + ~ ( c o s  eel +sin ~ e , ) .  

The quantity j will be taken to be & 1 for pure shear and pure rotation respectively. 
We note that Re,. = Re and Re, = KRe. 

3. Inner expansion 
We assume Re < (Re ~ ) 4  < 1. Near the sphere we can formally expand the fields as 

q(r) = q(o)(r)+Regq(l)(r)+ ..., 
p(r) = p(O)(r)+Re&p(l)(r)+ ..., 

where the terms not given explicitly are of higher order in Re. The two lowest-order 
fields (qn, p(O)) and (qQ), ~ ( 1 ) )  satisfy 
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The complete solution of (6) for i = 0 satisfying the scaled boundary conditions 
q ( O )  = S2 x r on 1 r [ = 1 and p(0) 4 0, q(0) -+ cos Be, + sin Be, as r -+ 00 is given by 

r q(0) = U(0) + - 1 2 (0 )  
++3 [zr P, - (2n. + 1 )  $% 1 

m 

where 

The fields of next order (i = 1)  are chosen in the same way, Utl) being the mean flow 

To O(Ret), the force and torque on the sphere can be computed from 
velocity induced a t  the particle by the far-field Oseen flow. 

I n  the absence of an applied torque, 
0 (j = I ) ,  

= (a. (j = -1). 

4. Outer expansions 
Now let us consider the outer expansion. Let the strained co-ordinate r’ be defined by 

r‘ = (&Re K)+ r 
and assume solutions of the form 

where S is the unit Stokeslet, defined by 

el cos 8 + e3 sin O 
r 

(xcosO+ysinO)V 
s = - [  1 

8n 
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and p,(r) = - 3(x cos 6 + z sin 6)/2r3 is the most singular part of the inner pressure field. 
The equations for p' and q' to lowest order are 

Vf2q '  - V'p' + (z' a q ' / a X '  + jx'aq'/az' + jqiel + qie,) 

= - 6n(e1 cos 8 + e3 sin 8) &(r'), (18) 

Q' . 9' = 0. (19) 

Now let us compute q' using Fourier transforms. We define 

r ( k )  = - q'exp ( - i k .  r') dr', (20 a )  8n3 's 
q'(r') = r (k)exp( ik . r ' )dk .  s 

The equations for r( k)  are 

ar ar 3 
- jk , - -k3-++jI' ,e ,+~,e , - ikIl  + k T  = -- (e,cosO+e,sinO), (21) ak, ak, 4772 

k . r  = 0. 

Using the relation k . X / a k ,  = - Pi (i = 1,2,3) ,  we can eliminate n, the transform 
of the pressure, to get 

ar ar 2k 
ak, ak, 

= -L{[(l--$) 4n2 cos8--sin8 k2 1 el 

- jk1 -  - k3 - +jF3e1+ Fie3 - (jk1 r3 + k3P1) + k 2 r  

5. Pure rotation 
For j = - 1 ,  the equations for ( rl, r,) are 

3 
4n2 

- - ---[(I-g) 

k , - - k , - +  ar, ar, 1 - 3  rl+ k2+ 2k1k3 

ak, ak, ( k2') ( 7) r3 
= --[-~3cos6+(l-!$)sin6] 3 (24) 

4772 k2 

and r2 can be found by quadrature. 
We note that 

I'(kl, k,, k,) = (31477,) { [ r p ( k 1 ,  k,, k,) cos 6 - rp( - k,, k,, k,)  sin 81 el 

+ [I 'p(kl ,  k,, k,) cos6 + rp)( - k,, k,, k,) sin81 e,}, ( 2 5 )  
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where (rp, I'd1)) is the solution of 

Let us introduce the characteristic co-ordinates 

k3 = f c o s a ,  k, = -$sing, (28) 

where k2 = f 2  + kg is independent of a. By considering a sequence of changes of the 
dependent variables, (Fp ,  rJ1)) can be found to  be 

k2[(k2- kk,) cos2 a - (k;  - kk,) sin2 a] (K;l+ K I ~ )  

+ f 2 c o s a s i n a  1+-, K-l+ 1-- K I ~  , (29a)  [( "k") + ( 9.) I1 
[(ki - kk,) cos2 a- (k2 - kk,) sin2 a] [ - (I + 2) K;1 

- (1 - 2) Kr'] + k2i2 sin a cos a(K;l+ KI1) 

where K ,  = k4 + ( 1  k 2k, /k)2 .  
The Stokeslet contribution is 

, 
ki + f 2  cos2 a g2 sin a cos a - 

2k4 
ry = - ( 2k4 

To compute the O(Re4) force on the particle, we need to determine only the matching 
condition on U(l)Ir=,, in the inner flow. This can be computed from r by subtracting 
the Stokeslet contribution and evaluating the velocity a t  r' = 0. Thus we must 
compute 

j p ) - r p ) d k .  (31) 

This integral can be evaluated exactly by changing to spherical co-ordinates 
(k, 6, a), where f 2  = kl + k;, f = k cos S and k, = k sin S. We then have 

and 

Now = Gnu('), (35) 

so that  F = 67rpaU( 1 + 0*976(*~Re)B). (36) 

Thus the drag is increased by the rotation of the fluid. We note that the transverse 
force on the particle is zero. 



398 D. A .  Drew 

6. Pure shear 
For j = 1,  the equations for ( r,, r,) are 

Again, r, can be found by quadrature. We further note that 

r(kl, k,, k,) = (3/4n2) {[I'il)(kl) k,, k,) COSO + l?J1)(k3, k,, k,) sin81 el 

+ [rJo)(kl) k,, k,) C O S ~  + J?jo)(k3) k,, k,) sin 81 e,}, (39) 

where ( I ' l O ) ,  I'do)) is the solution of 

We introduce characteristic co-ordinates in four different regions in k,, k, space: 

(I) k, = f s inha ,  k, = hcoshcr ( h  0), 

( h  > 0)) 

(111) k, = f s inha ,  k, = i c o s h a  (6 < 0), 

(IV) k, = fcoshcr, k, = hsinhcr (f < 0). 

(11) k, = f cosh cr) k, = f sinh cr 

The solution can again be found after several transformations of the dependent 
variable. In  region I, we have 

where 

(43) 
(k2, + f z )  cosh s cosh cr - k2, sinh s sinh 

[(hi - @ sinh cr cosh s - k2, cosh cr sinh s 
F(s, V )  = 

In 11, a similar sequence of computations leads to 

(45) k2, sinh cr cosh s - (k2, + f z )  sinh s cosh u 1 * k2, cosh cr cosh s - (k2, - f z )  sinh cr sinh s 
where G(s,  V )  = 

The solution in 111 is exactly the same as that in I with h negative, and the solution in 
IV  is exactly the same as that in 11, with h negative. 
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To compute the force on the sphere, we must compute 
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where rioJ is the Stokeslet contribution to the velocity transform: 

rLoI,rI = - k - 4 f I , d a ) ,  (47) 

where fI(a) = (ka + @cosh2 a, - h 2  cosh a sinh a), 

fII(a) = (ki + L2 sinh2 a) - k2 cosh asinh a). 

(48) 

(49) 

Exploiting the symmetries, integrating by parts to take care of the Stokeslet con- 
tribution, and evaluating the integral with respect to the radial co-ordinate in k space, 
the integral can be reduced to 

where 

and 

A(s, a) X) = 

( x 2 -  l)(2sinh2s)[(x2+ 1)coshs coshv-(W- 1)sinhs sinha] 
+ [ x 2  + (1 - x2) cosh 2s] [ ( x 2  + 1) sinh s cosh a - (3x2 - 1) 
x cosh s sinh v) 

+ [x2  -t (1 - 2 2 )  cosh 2s] [ ( x 2  + 1) sinh s sinh a - (3x2-  1) 
x cosh s cosh (r] 

( x 2 -  1)(2sinh2s)[(l+x2)coshs sinha-(3x2- 1)sinhs cosha] 

The integral (50) has been approximated numerically to get 

I g 2n4(0*37, 1.86). 

Thus the force on the particle is given by 

F = 6npaU. {[1+ 0*1O(&~Re)*] (elel+ e3e3) + 0*502(i~Re)& (e1e3+-e3e1)}. 

' (52) 

(53) 

(54) 

The first part represents the Stokes drag plus a shearing modification. We note that the 
shearing increases the drag. The second part is a force with a component perpendicular 
to  the drag, and hence represents a lift force. 

7. Conclusion 
We have computed the force on a sphere in slow viscous flow where the motion far 

from the sphere is (if pure rotation and (ii) pure shear. For the case of pure rotation, 
we found that the interaction of drag and deformation leads to an increase in the drag 
to lowest order and that the sphere experiences no transverse force to this order. For 
the case of pure shear, we found that the interaction of drag and deformation leads to 
an O(ReA) modification to the drag and an O(Reh) transverse force. 

We note that in situations where this O(Reh) force is valid (namely slow shear flow 
past a small sphere), this force is smaller than the Stokes drag force. This force, 
however, has a component perpendicular to the drag force. We therefore refer to this 
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force as a lift force. Even though the lift force may be negligible in magnitude com- 
pared with the drag force, it can still have an appreciable effect in directions transverse 
to the slip. 

The results in this paper, to lowest order, do not contradict the form of the lift force 
proposed by Drew (1976). If the lift force is LV. D,, then L = ulp4,da-llDfI-4, where 
1 E 2.2 and a is the particle volume fraction. This value of 1 is close to  that derived by 
Drew from Saffman’s (1965, 1968) result. The form of the lift matrix derived by 
Harper & Chang (1  968), however, suggests that  his result cannot be generalized to the 
more general flow, and that Drew’s ( 1  976) assumed form is incomplete. 

This work was supported by the Fluid Dynamics Branch of the Office of Naval 
Research. Conversations with several people helped to  shape this work; of special 
influence were W. S. Childress, I-Dee Chang and S. H. Davis. 
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